
Fault Tolerance using a Front-End Service for Large
Scale Distributed Systems

Marieta Nastase, Ciprian Dobre, Florin Pop, Valentin Cristea

Faculty of Automatics and Computer Science, University “Politehnica” of Bucharest, Romania
Emails: marietanastase@yahoo.com, ciprian.dobre@cs.pub.ro, florin.pop@cs.pub.ro, valentin.cristea@cs.pub.ro

Abstract—In this paper we present a solution to ensuring
dependability in service-based large scale distributed systems.
The proposed solution is based on a set of replicated services
running in a fault-tolerant container and a proxy service able
to mask possible faults, completely transparent for a client. We
demonstrate an architecture which not only masks possible faults
but also optimizes the access to the distributed services and
their replicas using a load-balancing strategy, whilst ensuring
a high degree of scalability. The advantages of the proposed
architecture were evaluated using a pilot implementation. The
obtained results prove that the proposed solution ensures a high
degree of availability and reliability for a wide range of service-
based distributed systems.

Keywords

Fault Tolerance, Dependability, Proxy Service, Replication, Load-
Balancing

I. INTRODUCTION

The domains of large scale distributed systems have been
extending during the past years from scientific to commercial
applications. Both in the academic and industrial environments
there is an increased interest in large scale distributed systems,
which currently represent the preferred instruments for devel-
oping a wide range of new applications. The Grid computing
domain has especially progressed during the last years due to
its offered technological opportunities.

While until recently the research in the distributed systems
domain has mainly targeted the development of functional
infrastructures, today researchers understand that many appli-
cations, especially the commercial ones, have some comple-
mentary necessities that the ”traditional” distributed systems
do not satisfy. Among the requirements that have emerged
for large scale distributed systems dependability is needed by
more and more modern distributed applications, not only by
the critical ones.

The service oriented architecture and the use of Web ser-
vices in large scale distributed systems led to the ease of
developing larger applications because of several advantages
[?]: the standardizations of the messages exchanged between
clients and services, as well as the way services are described
and discovered. But with the increasingly interest in large
scale distributed systems, clients pose new requirements: they
are interested in invoking services that can deliver correct
responses in a limited amount of time. The availability time
is becoming more important: the longer time a service is

available the more requests it can serve. Services that consider
such requirements are called dependable [?].

There are several methods to improve the quality of the
services [?]: fixing bugs before deployment, the adoption of
various fault tolerance mechanisms and solutions to recover
from errors, etc. All of them can be generally implemented
inside a service by the developer, leading to an increase in the
development time and to higher costs. Most service developers
choose the less costly and the fastest solution, not necessary
the one providing the highest quality. Unlike them, the service
providers are committed to offering dependable services to
their clients, which can cope with various negotiated Quality
of Services.

Although the importance of dependable services is widely
recognized and many research projects are currently well
underway, no general solution exists that could be easily
adopted by service providers and which could lead to an
increase in the dependability of the provided services, without
the support coming from service developers. In this paper we
present an efficient solution to satisfying the dependability
requirements of services in large scale distributed systems.
The solution masks the faults occurring in a set of replicated
services (at least functional similar set of services) by provid-
ing a container layer between them and various clients. The
architecture also provides optimal access to the distributed
services, without influencing the scalability characteristic of
the applications running in such distributed environments. The
solution is specifically adequate to provide support to service
providers, and do not rely on the inclusion in the service
development stage or any auxiliary functionalities or costs.

The rest of this paper is structured as follows. Section 2
presents related work to the problem of ensuring fault toler-
ance in large scale distributed systems. Section 3 introduces
the proposed service-based architecture. In the next section
we present the implementation details of the pilot application,
together with the considered balancing polity. In Section 5
we present several results obtained in the evaluation of the
solutions. Finally, in Section 6 we present some conclusions
and future work.

II. RELATED WORK

Although the importance of dependable services and sys-
tems is today widely recognized and many research projects
have been initiated recently in this domain, there are no mature



implementations of these concepts available yet. The existing
systems offer only partial solutions, and often the approaches
separate the issues of reliability, availability, security etc. Most
researches in this area are based on the idea of modifying the
service implementation such that to ensure fault tolerance.

An example of such an approach is described in [?]. The
authors propose the use of a primary-backup mechanism,
maintaining several synchronized replicas of a service, in
order to ensure fault tolerance. When the main service fails
one of the secondary replicas becomes principal. When the
client receives an error from the service it must resubmit the
request, which is then processed by the new primary replica.
The approach does not mask the errors and assumed the
modification of the stub used by the client.

Other approaches consider the masking of faults in the com-
munication level [?]. Such approaches represent the starting
point in obtaining a fault tolerance system at application level.
The difference here consists in the fact that, in the context of
services, at application level there is also a context for the
received message, containing meta-information related to the
request, information that can be useful for the fault tolerance
mechanism.

In [?] the authors present a system to ensure dependability
of services based on making a group of nodes appear to
clients as one single node. Once a request is received from
a client the system chooses the ”‘closest”’ node for treating
the request. The choosing of the node is realized based on a
modified approach of the any-cast routing scheme, using the
properties offered by the Mobile IPv6 protocol [?]. Although
this represents a solution that targets many of the problems
of dependability, if works only on nodes running the Xtreem
OS. From the client point of view the operating system must
also support the Mobile Ipv6 protocol.

The solution proposed in [?] considers the development of
a system composed of alternative, differently implemented,
set of services. Each available service is designed such that
to consider another set of errors. The solution is based on
DESL (Dependability Exchange and Specification Language),
a language for describing specifications for each service. But
the DESL language itself is not yet fully mature.

In [?] the authors showed, similarly to our own work,
how distributed computations that operate with an essentially
functional parallel programming model can tolerate faults with
relatively simple mechanisms, i.e. without global snapshots
as required in message passing programs. The authors also
implemented a system to demonstrate the validity of the idea,
based on the work presented in [?].

DIGS (Dependability Infrastructure for Grid Services) [?],
[?] is a project having as objective the design and imple-
mentation of a framework at application level for developing
dependable Grid services. The project describes the structure
of a ”proxy” that combines multiple identical services in a
”better” (having a higher dependability level) unitary service.
The starting point in reaching the desired objectives in this
case consisted in the design of a mechanism that can transpar-
ently intercept the SOAP messages exchanged between client

and service. A client sends a message to the proxy as this
would be the service providing the desired functionality. The
proxy intercepts the message and process it based on a fault
tolerance model, prior to forwarding it to the real service
behind. The messages coming from the service to the client
are also forwarded by the proxy.

In order to implement this system the authors used the idea
of a container of components: the development of a service
container that incorporates the mechanisms for fault tolerance.
Unlike our solution, this one considers the use of a proxy for
each service, and the client accesses the real service by sending
requests to the proxy. The real replicated services invoked by
the proxy are not necessary deployed in the same container as
the proxy service. Also, unlike our solution, for accessing the
service container the clients must be aware of the URI address
of the proxy service.

III. SERVICE-BASED ARCHITECTURE

The starting point in developing the solution for achieving
fault tolerance using replicated services was represented by the
analysis of the SOA and the currently used protocols. A typical
service is represented by an application identified by URI and
whose interfaces can be identified, described and discovered
using XML-based protocols. This scheme supports the direct
interaction with other applications using XML messages over
Internet protocols [10]. Typically an engine, such as Axis, is
furthermore responsible with processing the messages coming
from a client and invoking the services (Web or Grid service).
A typical service invocation is presented in Figure ??.

In order to increase the dependability of its services a
service provider can use several techniques. For example,
when a replica fails another one takes over and responds to
all future requests instead. In this way the dependability of
services increases, but the requests already sent to the failed
replica will not be recovered/answered anymore, and clients
will not correctly receive the answers to these requests.

In this we propose a solution that masks possible failures
and optimizes the access to the distributed services and to
the replicas of these services. The messages sent by a client
when invoking a service are intercepted by a proxy service,
implemented inside a container, which in return forwards them
further to a particular replica (chosen based on an optimality
criterion) of the invoked service and also re-forwards the re-
quest to another replica when the first one fails. The proposed
approach is presented in Figure ??.

The approach has the advantage that is does not require the
alteration of the service or client. In most cases the service
provider does not have access to the source code of the
service in order to add its own fault tolerance mechanisms.
The existence of a mechanism that can separate the service
implementation from the fault tolerance policy represents an
improved approach in the SOA context.

The proxy service being presented in this paper also con-
siders the balancing of load between service replicas. The
implementation of a load balancing policy ensures a more
efficient use of resources and leads to a smaller response time.



Fig. 1. Communication between client and the invoked service

Fig. 2. Communication between the client and a replica of the invoked service using the Proxy service as intermediary. S1, S2, S3 are replicas of the same
invoked service.

The algorithm used to choose a replica to receive a particular
request is also based on the number of errors previously
generated by a replica. In this way we also add a mechanism
for fault avoidance that considers the history of failures.

The proposed architecture is represented in Figure ??. The
architecture implements the proxyPattern design pattern. The
objective of this pattern consists in the definition of a proxy
object, situated between the client and the real service. This
object has the advantage that it can control the access to the
real service and inside can implement various actions that are
triggered each time a service is being invoked.

The service container also implements the proxy function-
ality for the replicated services. The messages sent to a real
service are intercepted by the container (with the help of a
SOAP listener) and are redirected to a replica of the real
service (with the help of a Proxy Service). All actions executed
inside this container are transparent to both the client and the
real service.

The client considers, throughout the entire communication,
that it is connected with the real service and not with the
proxy. Also all replicas respond to all requests as if they are
coming from real clients and not from another service.

The SOAP listener is the components responsible with the
monitoring of the SOAP message received by the service
container. This component receives the SOAP messages and
verifies if these messages should be redirected to the proxy
service or to the real invoked service. There are several situ-
ations when the message should be directly passed on to the
real service and should not be processed first inside the proxy
service. For example, when the messages being redirected by
the proxy to a replica of an invoked service are captured by
the SOAP listener they should be directly forwarded. Or in the
case of special services: the AdminService service is used by
the service providers to deploy services and the corresponding
messages should not be handled by the proxy.

The monitoring and load balancing service centralizes all
information regarding the service replicas and allow choosing
the optimum replica to be invoked by the Proxy service. This
service was designed as a separated component so that the
functionalities of the application are distributed in small units,
in accordance with the SOA specifications. This service can
also be invoked by other Proxy services or even by replicas of
the Proxy service, being implemented in more containers as
a replicated service. Also, because it runs as a completely
separated component, it can easily be replaced by another
component providing the same interface, so it also allows for
better extensibility.

When deployed this service first reads the list of replicated
services and the information regarding each replica from a
configuration file having the following structure:

<services>
<service name="TestService">
<replica url="http://192.168.2.2:8080/

axis/services/TestService"
MaxConnections="20" />

<replica url="http://192.168.3.2:8080/
axis/services/TestService"
maxConnections="30" />

<replica url="http://192.168.3.4:8080/
axis/services/TestService"
maxConnections="50" />

</service>
</services>

Each replicated service is represented by a ”service” el-
ement, where the name of the service is specified by the
”name” attribute. The replicas are specified as elements of type
”replica”. For each replica one can specify the URI address
and the maximum number of allowed connections. For each
replica the service initializes the total number of processed



Fig. 3. The architecture of the system for fault tolerant access

requests, the number of active requests as well as the total
number of exception being thrown by the replica service. The
statistical information is used by the algorithm in order to find
the optimum replica to serve a certain request.

When choosing the optimum replica to serve a certain
request the service also modifies the number of processed
requests and the number of active requests for that particular
replica. If for a replica the number of active requests is equaled
with the maximum number of requests it can process then the
replica is considered as functioning at full capacity and can
not be considered as adequate to process any other incoming
requests. When this situation happens another replica is chosen
instead. If at some time no replica is available a corresponding
exception is returned to the client.

The Proxy service acts as intermediary between the SOAP
messages received from the Listener, and the invocation of
the adequate replica responsible for processing the request,
is responsible with sending back any returned answer and
masking of any occurred error. When it receives a SOAP
message from the Listener, the Proxy service makes a request
to the Monitoring and Load-balancing Service to find out the
optimum replica that can serve the requests. The replica is
then used as the destination to which the Proxy forwards the

SOAP message. When the replica generates an exception the
monitoring service is again interrogated, and a new replica
is selected and the SOAP message is redirected to the new
replica.

IV. PILOT APPLICATION

In the context of the Axis architecture, the SOAP listener
component was implemented in the form of a filter registered
on the general request chain of Axis. This component receives
all incoming messages and redirects them to the real service or
to the Proxy service. The filter can be configured to the deploy-
ment of the entire container or to just the deployment of certain
services. The filter itself is an object of type ProxyHandler, a
class that extends the org.apache.axis.handlers.BasicHandler
class and which overrides the invoke method. The entire
processing chain of the message from the client to the proxy
service is represented in Figure ??.

The proxy service was implemented as a ”request” Web
service, implemented inside an Axis container. This type
of service assumes the instantiation of an object for each
incoming request. The approach allows the parallel processing
of incoming requests without the need to synchronize the
access to the internal information of the service. The advantage



Fig. 4. From Client to the SOAP message to the Proxy service.

of this approach consists of lower response times and the
increased capability of processing requests.

The service exports the function processMessage. Each time
this function is called a ProxyMessage object is created on
which we call the method processMessage. ProxyMessage is
a class having as members the context of the request, a list with
all the invoke replicas for that requests, the received response
from the last invoked replica and the exception received from
it. This information is then used by the proxy to choose a
replica.

Figure ?? presents the chain of actions being executed by
the Proxy service inside the processMessage function, when a
SOAP message is being received from Listener.

Fig. 5. The chain of actions being executed by the Proxy service.

When a replica is invoked the Proxy service modifies the
SOAP message, adding a supplementary header containing
meta-information. Inside the header it adds a field specifying

if the message should be forwarded to the real service and not
sent over again through the Proxy.

The Monitoring and Load-balancing Service is developed
as a Web service (called MonitorService) of type application
inside the Axis container. For this type of service Axis instan-
tiates a single service object. Consequently, all accesses to the
methods of this object are synchronized. The advantage of this
approach is that we have a centralized control of monitoring
information.

The replicated services are stored in a hash of ServiceIn-
stance objects. A ServiceInstance object maintains information
regarding the service, as well as a list of Replica objects. A
Replica object maintains information about the replica of a
particular service: the total number of requests that can be
processes by the replica, its accessing URI. Based on this
information for each replica internally we further compute a
value representing the level of trust or confidence we have in
that particular replica.

In order to offer high availability, the monitoring service
also runs a load-balancing algorithm. This is used when
choosing the replica that should serve a request. The load-
balancing functionality of replicas has the role of optimizing
the usage of resource and to decrease the response time needed
to serve a request.

The level of trust associated with each replica is computed
based on the number of active requests at a certain moment of
time, the number of requests that resulted in a valid response,
as well as the number of requests that resulted in exception
being thrown. Figure ?? presents the parameters that define
the level of trust for a particular replica.

Formula used to compute the level of trust for each replica
is as follows:

Level =
noOk + 1

noErrors ∗ 2 + noActive + 1
when noActive < noMaxim, or 0 otherwise. In this formula
Level represents the level of trust, noOk is the total number of
requests correctly processed, noErrors is the total number of
thrown errors, noActive is the total number of active requests
(the difference between the number of received requests and
the number of received responses, valid or errors), and no-
Maxim represents the maximum number of requests that can
be concurrently processed by the replica.

V. TESTS SCENARIOS AND EXPERIMENTAL RESULTS

For testing the system we implemented and deployed a
service TestService, which simulates the behavior of a real
computational service. This service emulates the functionality
of serving a particular request in a certain amount of time,
but also includes the possibility to be controlled if and when
it triggers exceptions. In order to evaluate the performance of
the proxy system we also developed a client simulator which
generates requests to the TestService service running inside the
same container with the Proxy service and with the Monitoring
and Load-balancing service. The requests are intercepted by
the Proxy service and redirected to the TestService replica



Fig. 6. The information associated with each replica.

TABLE I
THE RESULTS OBTAINED IN THE EXPERIMENTS

Total number The total number Number of Number of
of requests of requests errors errors as
sent by the processed by generated seen by the

client replicas by replicas client
9 10 1 0

111 118 7 0
200 236 47 10
266 266 0 0
147 129 0 18

having the higher level of trust. The used testing topology is
presented in Figure ??.

Fig. 7. The topology used for the evaluation experiments

Using this scenario we conducted a number of experiments.
First we evaluated the capability of the system to mask
possible errors. In the first steps of the experiment the load
balancing algorithm behaved in a Round-robin manner because
no replicas encountered errors, the replicas being circularly
and repeatedly selected to process each new incoming request.
In this situation the level of trust associated with each replica is
0.33. At a certain moment the client set one replica to generate
errors and then sent several more requests to be processed. The
first requests were processed by replicas without any errors.

Then the next request resulted in an error being generated.
When the Proxy service received the error retransmitted the
request to another replica.

In order to demonstrate the capability to mask errors the
next experiments considered the sending of 100 requests
to the TestService, with a frequency of three requests per
second, with one replica being set as an error generator. We
monitored the number of errors reported back to the client
and it constantly, throughout the entire experiment, was equals
to zero. All retransmission to other replicas of requests due
to faults occurring with the faulty replica were completely
masked to the client.

The client simulator sent only three requests per second
in this experiment, so in 10 seconds 30 requests are send,
while the maximum limit for concurrent processing of replicas
is set to 50. Because the number of requests received per
second never exceeded the processing capacity of the other
two replicas the client never received back any errors.

In the next experiment we demonstrated that the rate of error
masking depends on the number of requests being received by
the service. In this experiment the client sent requests with a
frequency of five requests per seconds. Again one replica was
set to continuously generate errors.

Because in this experiment the number of requests exceeded
the processing capacity of the two replicas working correctly
these requests were occasionally sent to the faulty replica.
That replica generated errors for all incoming requests and
the Proxy service was then trying to retransmit them as
a consequence to other replicas. When all replicas became
overloaded the Proxy service sent back the generated error to
the client. When at least one replica was not fully loaded with
requests it could still serve the requests forwarded from the
faulty replica and the client did not again see the generated
error. In this way the error masking, although not completely
transparent, was better then in the case when not using the
proxy service at all.

The results obtained running all these evaluation experi-
ments are presented in Table ??.

When using the proxy system the number of errors transmit-
ted to the client decreases considerably. For the experiments
where the replicas produce errors they are masked by redi-
rected requests to other replicas, all transparently for the client.



In this case the number of requests processed by replicas
increases.

In Figure ?? we represented the capacity to mask errors of
the proxy system. We executed each experiment by varying
the number of requests being sent per second.

Fig. 8. The masking of errors.

In this figure with blue we represented the number of
requests per seconds, with red the number of errors generated
by replicas and with grren the total number of errors as seen
by the client. As seen in this diagram an important factor
for masking errors is represented by the number of requests
received by the proxy system per second, as well as the
unumber of replicas generating errors for a particular request.

VI. CONCLUSION

In this paper we presented a solution to ensuring fault
tolerance in large scale distributed systems. The presented

solution is based on the idea of encapsulating replicated
distributed services inside a container with the purpose of
masking possible errors. In this case the client with a high
degree of confidence do not sees the error and the proxy
service tries various automatic solutions to recover from
occurred errors, such as forwarding the original requests to
another non-faulty replica. The presented solution also uses a
load-balancing system to ensure an efficient use of resource
and the decrease of the response time.

We demonstrated that the solution is viable and do not
necessitate the addition of any supplementary mechanisms in
the service implementation or the stub known by the client.
We used existing technologies that are already used by service
providers. This can easily be deployed in the context of both
Web and Grid service, as the architecture follows completely
the SOA architecture.

The use of the proxy system by the clients assumes only
the knowing of the address of the service implemented inside
the same container as the Proxy service. This address remains
unaltered even if other replicas of the same service are dy-
namically added or removed from the system. The transparent
use of replication ensures a high degree of scalability.

The system is implemented in accordance with the SOA
specifications and each component can be used by other
systems. For example the monitoring service can be used
by other services outside the Proxy service, and the Proxy
service can be used independently in the context of any other
monitoring service.

In the future we aim to extend the presented system by
implementing a replication mechanism for the Proxy service
itself, currently this being the single point of failure for the
system.


