
Facultatea de Automatica si Calculatoare

Universitatea “Politehnica“ din Bucuresti

This image cannot currently be displayed.

Fault Tolerance using a Front-End
Service for Large Scale Distributed

Systems

Marieta Nastase, Ciprian Dobre, Florin Pop, Valentin Cristea
ciprian.dobre@cs.pub.ro

Faculty of Automatics and Computer Science
University POLITEHNICA of Bucharest

Romania

This image cannot currently be displayed.

Outline

 A Service-Based Architecture
 Pilot Application
 Experimental Results
 Conclusions

This image cannot currently be displayed.

Motivation

 Dependability of services used in large scale distributed
systems  problem

 The proposed solution
 masks faults occurring in a set of replicated services by

envisioning a container layer between them and clients.
 provides optimized access to the distributed services
 is specifically adequate to provide support to service

providers
 do not rely on the use in the service development stage of

any auxiliary functionalities or costs

 does not require the alteration of the service or client 
separation between the service implementation from the
fault tolerance policy

This image cannot currently be displayed.

The proposed solution

 A typical service invocation

 The proposed solution

S1, S2, S3: replicas of the invoked service

This image cannot currently be displayed.

The architecture (1)

This image cannot currently be displayed.

The architecture (2)

 SOAP listener
Monitors SOAP messages received by container
 Redirects a message to the Proxy service or the real

invoked service
 Proxy Service

 Interrogates the monitoring service to find the address
of the invoked service to which to redirect the request

 Invokes the replica of the service
 Handled errors by sending requests to other still-

running replicas
 Monitoring service

 Delivers data about the status of the replicas

This image cannot currently be displayed.

A pilot implementation

 In the AXIS architecture, we implemented the SOAP listener
as a filter registered to the general request chain of Axis
 can be configured to the deployment of the entire

container or to just the deployment of certain services.
 The proxy service was implemented as a ”request” Web

service, implemented inside an Axis container
 lower response times
 increased capability to process requests

 The proxy server also balances the load between service
replicas
 also considers the number of errors previously generated

by a replica  mechanism for fault tolerance based on
the history of failures

This image cannot currently be displayed.

Message handling

This image cannot currently be displayed.

The chain of actions executed by
the Proxy service

This image cannot currently be displayed.

The information associated with
each replica

This image cannot currently be displayed.

Experimental results (1)

 To evaluate the system we implemented and deployed a
TestService service
 simulates the behavior of a real computational service
 serves a particular request in a certain amount of time
 includes a mechanism to control if and when to trigger

exceptions
 We also developed a client simulator, which generates

requests for the TestService service

This image cannot currently be displayed.

Experimental results (2)

 We also developed an application to monitor the
performances of the system:

This image cannot currently be displayed.

The topology used in the
experiments

This image cannot currently be displayed.

Experiments

 We conducted several evaluation experiments:
 Evaluation of the possibility to mask possible failures
 Simulation of high-load on the system because of the

errors being generated by replicas
 Evaluation of masking the overloading by using other

replicas
 Evaluation of increased capacity to mask processing

errors

This image cannot currently be displayed.

The evaluation of the possibility to
mask possible failures

 In this experiment the load balancing algorithm behaved in a
Round-robin approach
 no replicas encountered errors

 Replicas were circularly and repeatedly selected to process
each new incoming request

 The level of trust associated with each replica was 0.33
 At a certain moment the client set one replica to generate

errors and then sent several more requests to be processed
 the first requests were processed by replicas without any

errors.
 the next request resulted in an error being generated

 When the Proxy service received the error, it successfully
retransmitted the request to another replica.

This image cannot currently be displayed.

Evaluation of masking the
overloading by using other replicas

 The client sends requests with a frequency of five requests
per seconds. One replica was set to continuously generate
errors.

 The number of requests exceeded the processing capacity
of the two replicas working correctly  these requests were
occasionally sent to the faulty replica

 That replica generated errors for all incoming requests and
the Proxy service was then trying to retransmit them as a
consequence to other replicas

 When all replicas became overloaded the Proxy service sent
back the generated error to the client

 When at least one replica was not fully loaded with requests
it could still serve the requests forwarded from the faulty
replica and the client did not again see the generated error

This image cannot currently be displayed.

System’s Performance

 High capacity to mask processing errors
 For example, when one replica generates errors throughout

the entire time of the experiment:

This image cannot currently be displayed.

The results obtained in the
experiment

Total number of
requests sent by the

client

The total number of
requests processed by

replicas

Number of errors
generated by replicas

Number of errors as
seen by the client

9 10 1 0

111 118 7 0

200 236 47 10

266 266 0 0

147 129 0 18

This image cannot currently be displayed.

Experimental results

 We executed each experiment by varying the number of
requests being sent per second

 The capacity to mask errors of the proxy system:

No. requests / 40 seconds

No. errors at replicas level

No. errors at client level

Experiment number

This image cannot currently be displayed.

Conclusions

 Fault tolerance in large scale distributed systems by encapsulating
replicated distributed services inside a container with the purpose of
masking possible errors.
 The client do not sees the error and the proxy service tries various

automatic solutions to recover from occurred errors, such as
forwarding the original requests to another non-faulty replica.

 The solution uses a load-balancing system to ensure an efficient
use of resources and the decrease of the response time.

 The solution uses existing technologies that are already used by
service providers  easily deployable in the context of both Web
and Grid service.

 We demonstrated that the solution is viable and do not necessitate the
addition of any supplementary mechanisms in the service
implementation or the stub known by the client.

 In the future we aim to implement a replication mechanism for the
Proxy service itself  single point of failure for the system

Facultatea de Automatica si Calculatoare

Universitatea “Politehnica“ din Bucuresti

This image cannot currently be displayed.

Questions?

Thank You!

florin.pop@cs.pub.ro

University POLITEHNICA of Bucharest

